KRISTALL- UND MOLEKÜLSTRUKTUR ZWEIER DIASTEREOMERER HEXACHLOROTHIOLPHOSPHORSÄUREESTER C6H9O4PS2CL

L. KUTSCHABSKY* und A. MESSERSCHMIDT Zentralinstitut für Molekularbiologie der Akademie der Wissenschaften der DDR, Berlin-Buch, Lindenberger Weg 70, DDR

und

H. Sohr

Forschungsstelle für chemische Toxikologie der Akademie der Wissenschaften der DDR, Leipzig, Johannisallee 20,

DDR

(Received in Germany 8 May 1978)

Abstract—By X-ray analysis the crystal and molecular structures of two diastereomeres of O,O-dimethyl-S-(2'trichloro-l'-hydroxyethyl-1-mercapto-2-trichloroethyl)thiolphosphate have been established. The different chemical shifts of the signals of the methyl groups in the 'H NMR-spectrum of one diastereomer, in contrast to the other, could be explained by the different effects of magnetic anisotropic groups of the methyl protons.

Durch Umsetzen von Trimethylthiophosphat mit Trichloracetaldehyd in konzentrierter Schwefelsäure erhält man 0,0 - Dimethyl - S - (2' - trichlor - 1' - hydroxy äthyl - 1 - mercapto - 2 - trichloräthyl)thiolphosphat (1), das wegen seiner pestiziden Wirksamkeit von besonderem Interesse ist. NMR-spektroskopische Untersuchungen¹ ergaben, dass diese Verbindung in zwei diastereomeren Formen auftritt, die als trikline (1_t) und monokline (1_m) Kristallisate isoliert werden konnten.

Das ¹H NMR-Spektrum von 1_t zeigt unterschiedliche chemische Verschiebungen (3.87 bzw. 3.94 ppm) für die Signale der Protonen der beiden Methylgruppen, wogegen beim Diastereomer 1_m die entsprechenden chemischen Verschiebung mit 3.89 und 3.90 ppm fast gleich sind. Es war zu erwarten, dass die grössere Differenz der chemischen Verschiebungen der Methylsignale bei 1_t gegenüber 1_m auf den unterschiedlichen Einfluss magnetisch anisotroper Gruppen zurückzuführen ist.

Zur Bestimmung der Raumstruktur dieser biologisch wirksamen Verbindungen und zur Erklärung der unterschiedlichen ¹H NMR-Spektren wurden Röntgenstrukturanalysen durchgeführt.

Aus wässriger Lösung wurde ein farbloses Kristallisat gewonnen, das die zwei diastereomeren Formen 1_t und 1_m im Verhältnis 2:1 enthält.

<u>1</u>, besitzt die trikline zentrosymmetrische Raumgruppe P 1 mit der reduzierten Zelle a = 9.719 (5), b = 10.465 (4), c = 9.486 (4) Å; $\alpha = 106.71$ (20)°, $\beta = 110.85$ (15)°, $\gamma = 73.15$ (15)°; D_c = 1.77 g/cm³; Z = 2.

 I_m kristallisiert in der monoklinen zentrosymmetrischen Raumgruppe P(2₁/c) mit a = 9.063 (2), b = 10.430 (2), c = 19.873 (3) Å; β = 114.52 (15)°; D_c = 1.749 g/cm³; Z = 4.

Die Datengewinnung erfolgte mit dem automatischen Vierkreisdiffraktometer von Hilger & Watts, wobei die $\omega - 2\theta$ -Abtastung durchgeführt und die verwendete Röntgenstrahlung (MoK_a) an einem Graphitkristall monochromatisiert wurde. Bei 1, wurden im Bereich einer 2 θ Kugel von 36° insgesamt 1162 Reflexe (davon 782 beobachtet) und bei 1_m im Bereich einer 2 θ Kugel von 40.6° insgesamt 1619 Reflexe (davon 1421 beobachtet) gemessen. Beide Strukturen wurden durch direkte Methoden mit dem MULTAN-Programm² bestimmt. Die

Tabelle	1. Atomkoordinaten	(Standardabweichungen	in	Klam-
		mern)		

		1.	
Atom	x/a	y/b	z/c
CI(1)	0.4432 (15)	0.2866 (18)	- 0.0086 (13)
C1(2)	0.6588 (14)	0.3391 (18)	0.2417 (15)
Cl(3)	0.3529 (15)	0.3195 (18)	0.2198 (12)
Cl(4)	0.0552 (21)	-0.5068 (24)	0.3352 (18)
Cl(5)	0.2057 (21)	-0.3632 (25)	0.1261 (25)
Cl(6)	-0.0535 (15)	-0.2943 (22)	0.1057 (15)
S(1)	0.5572 (14)	- 0.0122 (17)	0.1861 (12)
S(2)	0.2360 (12)	-0.0212 (17)	0.1499 (12)
P(1)	0.7117 (15)	- 0.0274 (22)	0.3698 (15)
C(1)	0.4371 (62)	0.0760 (75)	0.2301 (55)
C(2)	0.4772 (66)	0.2402 (86)	0.1712 (60)
C(1')	0.2121 (72)	-0.1906 (68)	0.2776 (69)
C(2')	0.0995 (61)	-0.3395 (99)	0.2169 (78)
C(3)	0.6421 (105)	-0.3254 (99)	0.4008 (89)
C(4)	0.9579 (93)	0.0882 (113)	0.2443 (78)
·0(1)	0.7479 (71)	- 0.1804 (87)	0.3803 (58)
O(2)	0.6706 (42)	-0.0122 (53)	0.4890 (38)
O(3)	0.8752 (58)	0.0845 (81)	0.3468 (53)
O(4)	0.1095 (95)	-0.1972 (74)	0.3704 (64)
			•
		1 _m	
Atom	x/a	1 _m y/b	z/c
Atom Cl(1)	x/a 0.1374 (9)	1 _m y/b 0.2129 (7)	z/c 0.2290 (4)
Atom Cl(1) Cl(2)	x/a 0.1374 (9) 0.0994 (9)	1 _m y/b 0.2129 (7) 0.0111 (7)	z/c 0.2290 (4) 0.3172 (5)
Atom Cl(1) Cl(2) Cl(3)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4)
Atom Cl(1) Cl(2) Cl(3) Cl(4)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8319 (9) 0.6665 (10)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5263 (7)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6) -0.1457 (6)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3) 0.3623 (3)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1) C(1)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5263 (7) 0.3867 (22)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0653 (5) 0.2627 (6) -0.1457 (6) 0.1234 (18)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3) 0.3623 (3) 0.3623 (3) 0.3480 (11)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1) C(1) C(2)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5102 (8) 0.3867 (22) 0.2127 (26)	1m y/b 0.2129 (7) 0.01111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6) -0.1457 (6) 0.1234 (18) 0.1482 (19)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.2287 (3) 0.3539 (3) 0.3623 (3) 0.3623 (3) 0.3480 (11) 0.3175 (11)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1) C(1) C(2) C(1')	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5263 (7) 0.3867 (22) 0.2127 (26) 0.6014 (25)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6) -0.1457 (6) 0.1234 (18) 0.1482 (19) 0.2861 (19)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3) 0.3623 (3) 0.3623 (3) 0.3480 (11) 0.3175 (11) 0.4563 (9)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1) C(1) C(1) C(2) C(1')	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5263 (7) 0.3867 (22) 0.2127 (26) 0.6014 (25) 0.7479 (24)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6) -0.1457 (6) 0.1234 (18) 0.1482 (19) 0.2861 (19) 0.3813 (20)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3) 0.3623 (3) 0.3623 (3) 0.3480 (11) 0.3175 (11) 0.4563 (9) 0.4721 (10)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1) C(1) C(1) C(2) C(1') C(2') C(3)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5263 (7) 0.3867 (22) 0.2127 (26) 0.6014 (25) 0.7479 (24) 0.8290 (30)	1m y/b 0.2129 (7) 0.01111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6) 0.1234 (18) 0.1482 (19) 0.2861 (19) 0.3813 (20) - 0.0748 (25)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3) 0.3623 (3) 0.3623 (3) 0.3480 (11) 0.3175 (11) 0.4563 (9) 0.4721 (10) 0.4284 (13)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1) C(1) C(1) C(2) C(1) C(2) C(3) C(4)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5263 (7) 0.3867 (22) 0.2127 (26) 0.6014 (25) 0.7479 (24) 0.8290 (30) 0.2988 (27)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6) -0.1457 (6) 0.1234 (18) 0.1482 (19) 0.2861 (19) 0.3813 (20) -0.0748 (25) -0.3107 (22)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3) 0.3623 (3) 0.3623 (3) 0.3480 (11) 0.3175 (11) 0.4563 (9) 0.4721 (10) 0.4284 (13) 0.2812 (13)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1) C(1) C(2) C(1) C(2) C(2) C(3) C(4) C(2) C(3) C(4) C(2) C(2) C(3) C(4) C(1) Cl(2) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) Cl(2) Cl(6) Cl(6) Cl(2) Cl(6) Cl(6) Cl(6) Cl(6) Cl(7) C	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5263 (7) 0.3867 (22) 0.2127 (26) 0.6014 (25) 0.7479 (24) 0.8290 (30) 0.2988 (27) 0.7114 (13)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6) -0.1457 (6) 0.1234 (18) 0.1482 (19) 0.2861 (19) 0.3813 (20) -0.0748 (25) -0.3107 (22) -0.1554 (11)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3) 0.3623 (3) 0.3623 (3) 0.3480 (11) 0.3175 (11) 0.4563 (9) 0.4721 (10) 0.4284 (13) 0.2812 (13) 0.3790 (6)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1) C(1) C(2) C(1) C(2) C(1) C(2) C(3) C(4) O(1) O(2)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5263 (7) 0.3867 (22) 0.2127 (26) 0.6014 (25) 0.7479 (24) 0.8290 (30) 0.2988 (27) 0.7114 (13) 0.4911 (12)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6) -0.1457 (6) 0.1234 (18) 0.1482 (19) 0.2861 (19) 0.3813 (20) -0.0748 (25) -0.3107 (22) -0.1554 (11) -0.1347 (10)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3) 0.3623 (3) 0.3623 (3) 0.3623 (3) 0.3480 (11) 0.3175 (11) 0.4563 (9) 0.4721 (10) 0.4284 (13) 0.2812 (13) 0.3790 (6) 0.4252 (5)
Atom Cl(1) Cl(2) Cl(3) Cl(4) Cl(5) Cl(6) S(1) S(2) P(1) C(1) C(2) C(1') C(2) C(1') C(2) C(3) C(4) O(1) O(2) O(3)	x/a 0.1374 (9) 0.0994 (9) 0.1773 (9) 0.8340 (10) 0.8919 (9) 0.6665 (10) 0.4278 (8) 0.5102 (8) 0.5263 (7) 0.3867 (22) 0.2127 (26) 0.6014 (25) 0.7479 (24) 0.8290 (30) 0.2988 (27) 0.7114 (13) 0.4911 (12) 0.4724 (13)	1m y/b 0.2129 (7) 0.0111 (7) 0.2659 (7) 0.4070 (7) 0.3284 (8) 0.5247 (6) 0.0053 (5) 0.2627 (6) -0.1457 (6) 0.1234 (18) 0.1482 (19) 0.2861 (19) 0.3813 (20) -0.0748 (25) -0.3107 (22) -0.1554 (11) -0.1547 (10) -0.2716 (10)	z/c 0.2290 (4) 0.3172 (5) 0.3773 (4) 0.5681 (3) 0.4443 (4) 0.4275 (4) 0.2887 (3) 0.3539 (3) 0.3623 (3) 0.3623 (3) 0.3480 (11) 0.3175 (11) 0.4563 (9) 0.4721 (10) 0.4284 (13) 0.2812 (13) 0.3790 (6) 0.4252 (5) 0.3134 (6)

Verfeinerung der Atomparameter erfolgte mit der Methode der kleinsten Quadrate nach dem Block-Diagonal-Verfahren. Die hohen abschliessenden Diskrepanzfaktoren von R = 0.157 bei 1, und R = 0.130 bei 1_m für die F(hkl)_{obs} erklären sich aus den ungenauen Messdaten infolge der schnellen Zersetzung der Kristalle unter Einwirkung der Röntgenstrahlung. Daher konnten in den abschliessenden Differenzfouriersynthesen die Wasserstoffatome nicht nachgewiesen werden. Die verfeinerten Atomkoordinaten sind in Tabelle 1 zusammengestellt, die Bindungsabstände und -winkel in (Abb. 1a und 1b) bzw. (Abb. 2a und 2b) dargestellt.

Abb. 1(a). Räumliche Molekülstruktur und Bindungsabstände bei I₁.

Abb. 1(b). Bindungswinkel bei 1r. Die Standardabweichungen der Winkel betragen maximal 5°.

Abb. 2(a). Räumliche Molekülstruktur und Bindungsabstände 1m.

Bei 1, liegen an den asymmetrischen Kohlenstoffatomen C(1) und C(1') die Absolutkonfigurationen RS bzw. SR vor (Abb. 1a). Bei 1m treten an diesen Atomen die RRbzw. SS-Konfigurationen auf (Abb. 2a). Der Abstand zwischen dem Wasserstoffatom H(1'), das durch die Kenntnis der Lage der Nichtwasserstoffatome fixiert ist, zu den Nachbaratomen beträgt C(1)-H(1') = 2.5 Å, S(1)-H(1') = 2.9 Å und H(1)-H(1') = 2.6 Å. Bei 1_m sind die Positionen von H(1') und O(4) vertauscht. Da der Platzbedarf der Hydroxylgruppe O(4) wesentlich grösser ist als der eines Wasserstoffatoms, tritt aus sterischen Gründen eine Drehung um die Einfachbindungen C(1)-S(2) und S(2)-C(1') auf. Damit wird der Abstand zwischen Cl(5) und C(3) grösser und ermöglicht eine Konformationsänderung der Phosphatgruppe. Eine Drehung um die Bindungen C(1)-S(1) und S(1)-P(1) vergrössert den Abstand zwischen Cl(2) und O(3) und ermöglicht das Umklappen der Methylgruppe C(4).

Die Bindungsabstände und -winkel liegen in den normalen Grenzen. Ebenso wie beim Trichlorphon³ deutet der kurze Abstand P(1)–O(2) auf eine Bindung mit Doppelbindungscharakter hin. Damit steht auch die Aufweitung der an die P(1)–O(2)-Bindung angrenzenden Winkel gegenüber dem regulären Tetraederwinkel von 109.47° im Einklang. In der Kristallstruktur sind bei den beiden Diastereomeren je zwei zentrosymmetrisch zueinander liegende Moleküle durch zwei ebenfalls zentrosymmetrisch angeordnete Wasserstoffbrücken O(4)–H...O(2) [O(2) entsteht aus O(2) durch die Symmetrieoperation 1 - x, 1 - y, 1 - z] zu Dimeren miteinander verknüpft. Bei 1. beträgt die Länge dieser Wasserstoffbrücke 2.80 Å und bei 1_m 2.68 Å. Die Dimere sind ihrerseits im Kristall durch van der Waalskontakte fixiert.

Bei der Untersuchung des Zusammenhangs zwischen den Molekülstrukturen und den Unterschieden in den ¹H NMR-Spektren wurde angenommen, dass die in den Kristallen gefundenen Raumstrukturen der Moleküle als bevorzugte Konformationen auch in der Lösung auftreten. Diese Annahme wird durch die festgestellte Dimerisierung der beiden Diastereomeren im kristallinen Zustand unterstützt. Ausgehend von der von McConnell⁴ aufgestellten Beziehung

$$\Delta \delta = \frac{\Delta x \, 10^6}{3 \mathrm{R}^3} (3 \cos^2 \theta - 1)$$

 $(\Delta \delta = \text{Beitrag} \text{ zur chemischen Verschiebung, } \Delta x = \text{Differenz der Suszeptibilitäten, } R = Länge des vom Zentrum der Bindung zum Proton führenden Vektors, <math>\theta = \text{Winkel zwischen Bindungsachse und Vektor R}$, wurde der geometrische Anteil $\Delta \delta / \Delta x$ des Einflusses magnetisch anisotroper Gruppen für alle Bindungen zwischen Nichtwasserstoffatomen berechnet und ein Vergleich der Grössen mit gleichen oder ähnlichen Δx -Werten durchgeführt. Dabei wurde wegen der in Lösung starken Drehbarkeit der Methylgruppen als Vektor R der Vektor vom Zentrum der Bindung zum Schwerpunkt

Tabelle 2. Differenzen A zwisch Einflusses magnetisch anisotrope Ax auf die Schwerpunkte der Me Tabelle sind die Klammer	en dem geometrischen r Gruppen mit gleichen thylprotonen MH(3) un n aus Platzgründen weg	Anteil Δδ/Δx de 1 oder ähnlichen d MH(4). (In de ggelassen)
Differenz der	Δ δ,	/۵X
Wirkungen	triklin	monokli
∆(cl1-02,cl2-C2, cl3-c2 → ME3; cl4-c2',cl5-c2', cl4-c2' → MH4)	-0-0010	-0-0056
∆ (02-P1 + ME3; 02-P1 + ME4)	-0*0138	+0,0020
△(04	0.0013	0.0044
△(01P1 + MH3; 03P1 + MH4)	0+0015	0,0083
△ (03P1 → MH3; 01P1 → MH4)	0+0177	6000*0
△ (03-c4 + MH3; 01-c3 + MH4)	-0-0134	000010
△ (61-P1 → MH3; 51-P1 → MH4)	-0,0011	0.0031
& (81-c1 → MH3; 81-c1 → MH4)	-0-0022	-0-0053
△ (C1'-C2' → MH3; C1-C2 → MH4)	+0000+0-	-0-0001
△ (C1-S2 → MH3; C1*-S2 → MH3)	-0+0011	-0-0001

Abb. 2(b). Bindungswinkel bei 1_m . Die Standardabweichungen der Winkel betragen maximal 1.5° .

502

MH(3) bzw. MH(4) der jeweiligen Methylprotonen an C(3) bzw. C(4) und nicht zu den Einzelprotonen gewählt. Zwischen den Beiträgen auf die chemischen Verschiebungen der Methylsignale an C(3) und C(4) mit gleichen oder ähnlichen Δx -Werten wurde die Differenz gebildet (Tabelle 2).

Die Chlorgruppen sowie alle Bindungen zwischen den Chlorgruppen haben wegen des grossen Abstandes (R > 4Å) nur einen sehr geringen magnetischen Einfluss auf die Methylprotonen im Vergleich zu den Bindungen, die sich in der Nähe der Methylgruppen befinden. Bei 1_m ist der Einfluss dieser Bindungen auf die beiden Methylgruppen wegen des Vorhandenseins einer näherungsweise gültigen partiellen Spiegelebene durch P(1), O(2) und S(1) fast gleich, wodurch sich in Tabelle 2 sehr kleine Differenzen ergeben. Bei 1_t dagegen treten wegen des Fehlens dieser Spiegelebene in drei Fällen grosse Differenzen und damit stark unterschiedliche Einflüsse magnetisch anisotroper Gruppen auf die Protonen der jeweiligen Methylgruppen auf. Die Methylgruppen sind daher bei 1_t magnetisch nicht äquivalent. Das erklärt die beobachteten unterschiedlichen chemischen Verschiebungen der Methylsignale.

Danksagungen—Die Autoren danken Herrn Prof. Dr. habil. E. Höhne für wertvolle Diskussionen, Herrn Dr. G. Reck für seine Mitarbeit bei der Datengewinnung und den Herren Dr. A. Zschunke und Dr. R. Radeglia für Hinweise bezüglich des Einflusses der Struktur auf die chemischen Verschiebungen im ¹H NMR-Spektrum. Frau G. Bannier und Frau I. Seidel sei für die sorgfältige Durchführung der technischen Arbeiten gedankt.

LITERATUR

 ¹H. Sohr und A. Zschunke, Phosphorus 6, 107 (1976).
²P. Main, M. M. Woolfson und G. Germain, MULTAN-A Computer Programme for the Automatic Solution of Crystal Structures, Universities of York, England and Leuven, Belgien.
³E. Höhne und KH. Lohs, Z. Naturforsch. 24b, 1071 (1969).
⁴McConnell, J. Chem. Phys. 27, 226 (1957).